4.7 Article

Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape

期刊

REMOTE SENSING
卷 4, 期 8, 页码 2210-2235

出版社

MDPI AG
DOI: 10.3390/rs4082210

关键词

ICESat/GLAS; waveform lidar; forest structure; tree height; surface topography; mountainous area

资金

  1. German Aerospace Center (DLR)

向作者/读者索取更多资源

This study explores ICESat/GLAS waveform data in Thuringian Forest, a low mountain range located in central Germany. Lidar remote sensing has been proven to directly derive tree height as a key variable of forest structure. The GLAS signal is, however, very sensitive to surface topography because of the large footprint size. This study therefore focuses on forests in a mountainous area to assess the potential of GLAS data to derive terrain elevation and tree height. The work enhances the empirical knowledge about the interaction between GLAS waveform and landscape structure regarding a special temperate forest site with a complex terrain. An algorithm to retrieve tree height directly from GLA01 waveform data is proposed and compared to an approach using GLA14 Gaussian parameters. The results revealed that GLAS height estimates were accurate for areas with a slope up to 10 whereas waveforms of areas above 15 degrees were problematic. Slopes between 10-15 degrees have been found to be a critical crossover. Further, different waveform shape types and landscape structure classes were developed as a new possibility to explore the waveform in its whole structure. Based on the detailed analysis of some waveform examples, it could be demonstrated that the waveform shape can be regarded as a product of the complex interaction between surface and canopy structure. Consequently, there is a great variety of waveform shapes which in turn considerably hampers GLAS tree height extraction in areas with steep slopes and complex forest conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据