4.6 Article

Inductive heating kills cells that contribute to plaque: a proof-of-concept

期刊

PEERJ
卷 3, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.929

关键词

Remote cell death; Microparticles; Atherosclerosis treatment methodologies; Electromagnetic induction heating; Translational research

资金

  1. National Institutes of Health [GM084520]

向作者/读者索取更多资源

Inducing cell death by heating targeted particles shows promise in cancer treatment. Here, we aim to demonstrate the feasibility of extending the use of this technique to treat and remove vascular deposits and thrombosis. We used induction heating of macrophages, which are key contributors to atherosclerosis and have demonstrated clear feasibility for heating and destroying these cells using ferromagnetic and pure iron particles. Specifically, iron particles achieved maximum temperatures of 51 +/- 0.5 degrees C and spherical particles achieved a maximum temperature of 43.9 +/- 0.2 degrees C (N = 6) after 30 min of inductive heating. Two days of subsequent observation demonstrated that inductive heating led to a significant reduction in cell number. Prior to induction heating, cell density was 105,000 +/- 20,820 cells/ml (N = 3). This number was reduced to 6,666 +/- 4,410 cells/ml for the spherical particles and 16,666 +/- 9,280 cells/ml for the iron particles 24 h after inductive heating. Though cell density increased on the second day following inductive heating, the growth was minimal. Cells grew to 26,667 +/- 6,670 cells/ml and 30,000 +/- 15,280 cells/ml respectively. Compared to cell cultures with iron and spherical particles that were not subjected to induction heating, we observed a 97% reduction in cell count for the spherical particles and a 91% reduction for the iron particles after the first 24 h. After 48 h we observed a 95% reduction in cell growth for both spherical and iron particles. Induction heating of microparticles was thus highly effective in reducing the macrophage population and preventing their growth. These results demonstrate the feasibility of targeting cells involved in atherosclerosis and warrant further research into potential clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据