4.7 Article

Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention

期刊

PLOS PATHOGENS
卷 10, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1003959

关键词

-

资金

  1. Wellcome Trust [WT089981MA]
  2. EU [241476]
  3. European Community [PITN-GA-2011-289209]
  4. MRC Senior Clinical Fellowship [G0701932]
  5. MRC Centre grant [G0700091]
  6. Medical Research Council [G0700091, G0700091B, G0701932, G108/595] Funding Source: researchfish
  7. MRC [G108/595, G0701932, G0700091] Funding Source: UKRI

向作者/读者索取更多资源

To slow the inexorable rise of antibiotic resistance we must understand how drugs impact on pathogenesis and influence the selection of resistant clones. Staphylococcus aureus is an important human pathogen with populations of antibiotic-resistant bacteria in hospitals and the community. Host phagocytes play a crucial role in controlling S. aureus infection, which can lead to a population bottleneck whereby clonal expansion of a small fraction of the initial inoculum founds a systemic infection. Such population dynamics may have important consequences on the effect of antibiotic intervention. Low doses of antibiotics have been shown to affect in vitro growth and the generation of resistant mutants over the long term, however whether this has any in vivo relevance is unknown. In this work, the population dynamics of S. aureus pathogenesis were studied in vivo using antibiotic-resistant strains constructed in an isogenic background, coupled with systemic models of infection in both the mouse and zebrafish embryo. Murine experiments revealed unexpected and complex bacterial population kinetics arising from clonal expansion during infection in particular organs. We subsequently elucidated the effect of antibiotic intervention within the host using mixed inocula of resistant and sensitive bacteria. Sub-curative tetracycline doses support the preferential expansion of resistant microorganisms, importantly unrelated to effects on growth rate or de novo resistance acquisition. This novel phenomenon is generic, occurring with methicillin-resistant S. aureus (MRSA) in the presence of -lactams and with the unrelated human pathogen Pseudomonas aeruginosa. The selection of resistant clones at low antibiotic levels can result in a rapid increase in their prevalence under conditions that would previously not be thought to favor them. Our results have key implications for the design of effective treatment regimes to limit the spread of antimicrobial resistance, where inappropriate usage leading to resistance may reduce the efficacy of life-saving drugs. Author SummaryStaphylococcus aureus is a major cause of human disease, made even more notable due to the spread of antibiotic resistance. We used a combination of animal models to study the spread of bacteria between organs during an infection and the resulting effect of antibiotic intervention. We found that S. aureus infection is highly clonal, following a bottleneck in which very few bacterial cells found each abscess. Despite previous in vitro research, the effect of antibiotics on S. aureus infection was poorly understood. We utilized our systemic infection models to study intervention with sub-curative antibiotic doses, such as one might encounter upon failing to complete an antibiotic course. We have shown that such doses are able to support the preferential expansion of antibiotic-resistant organisms during a mixed infection. This selection is due to the clonal pattern of infection, occurring despite a lack of effect on growth rate or on the spontaneous generation of resistance. Furthermore, it is generic to multiple pathogen species, including Pseudomonas aeruginosa, and antibiotic classes, such as with methicillin-resistant S. aureus (MRSA) in the presence of oxacillin. Given the current debate in the field, our results have important implications for the design of properly-controlled treatment regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据