4.7 Article

In Vivo Functions of CPSF6 for HIV-1 as Revealed by HIV-1 Capsid Evolution in HLA-B27-Positive Subjects

期刊

PLOS PATHOGENS
卷 10, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1003868

关键词

-

资金

  1. National Institutes of Health (NIH) [R01AI100720, R01AI076121]
  2. NIH-funded Pittsburgh Center for HIV Protein Interactions [GM082251]
  3. NIH [T32 AI089554, F31 AI108481]

向作者/读者索取更多资源

The host protein CPSF6 possesses a domain that can interact with the HIV-1 capsid (CA) protein. CPSF6 has been implicated in regulating HIV-1 nuclear entry. However, its functional significance for HIV-1 replication has yet to be firmly established. Here we provide evidence for two divergent functions of CPSF6 for HIV-1 replication in vivo. We demonstrate that endogenous CPSF6 exerts an inhibitory effect on naturally occurring HIV-1 variants in individuals carrying the HLA-B27 allele. Conversely, we find a strong selective pressure in these individuals to preserve CPSF6 binding, while escaping from the restrictive activity by CPSF6. This active maintenance of CPSF6 binding during HIV-1 CA evolution in vivo contrasts with the in vitro viral evolution, which can reduce CPSF6 binding to evade from CPSF6-mediated restriction. Thus, these observations argue for a beneficial role of CPSF6 for HIV-1 in vivo. CPSF6-mediated restriction renders HIV-1 less dependent or independent from TNPO3, RanBP2 and Nup153, host factors implicated in HIV-1 nuclear entry. However, viral evolution that maintains CPSF6 binding in HLA-B27+ subjects invariably restores the ability to utilize these host factors, which may be the major selective pressure for CPSF6 binding in vivo. Our study uncovers two opposing CA-dependent functions of CPSF6 in HIV-1 replication in vivo; however, the benefit for binding CPSF6 appears to outweigh the cost, providing support for a vital function of CPSF6 during HIV-1 replication in vivo. Author Summary The viral capsid (CA) protein of HIV-1 determines both the ability to infect non-dividing cells and the utilization of host factors implicated in nuclear entry. Understanding how CA controls these two properties is critical. CPSF6, a CA-interacting host protein, may be important for these properties but its precise role remains unclear. Here we provide direct evidence for the involvement of endogenous CPSF6 during HIV-1 infection. We found that CPSF6 blocks CA mutants that are impaired for infection of non-dividing cells. This CPSF6-mediated inhibition also targets early escape variants that arise in HIV-1 infected HLA-B27+ patients. Moreover, this CPSF6-mediated inhibition, together with robust CTL response, appears to be critical for viral suppression, because viruses derived after late viral breakthrough in these individuals were no longer sensitive to the antiviral activity of CPSF6. However, we also report indirect evidence for a potentially beneficial role for CPSF6 in HIV-1 replication, because escape from this inhibition in vivo was paradoxically accompanied by a strict preservation of the CPSF6 binding pocket. These results highlight the unique characteristics of the HIV-CPSF6 interactions in which CPSF6 can be either beneficial or detrimental for viral replication in a CA-specific manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据