4.7 Article

The DAF-16/FOXO Transcription Factor Functions as a Regulator of Epidermal Innate Immunity

期刊

PLOS PATHOGENS
卷 9, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1003660

关键词

-

资金

  1. National Basic Research Program of China [2013CB127500, 2012CB722208]
  2. National Natural Science Foundation of China [311171365]
  3. Yunnan Department of Science and Technology [2009CI045]

向作者/读者索取更多资源

The Caenorhabditis elegans DAF-16 transcription factor is critical for diverse biological processes, particularly longevity and stress resistance. Disruption of the DAF-2 signaling cascade promotes DAF-16 activation, and confers resistance to killing by pathogenic bacteria, such as Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis. However, daf-16 mutants exhibit similar sensitivity to these bacteria as wild-type animals, suggesting that DAF-16 is not normally activated by these bacterial pathogens. In this report, we demonstrate that DAF-16 can be directly activated by fungal infection and wounding in wild-type animals, which is independent of the DAF-2 pathway. Fungal infection and wounding initiate the Gaq signaling cascade, leading to Ca2+ release. Ca2+ mediates the activation of BLI-3, a dual-oxidase, resulting in the production of reactive oxygen species (ROS). ROS then activate DAF-16 through a Ste20-like kinase-1/CST-1. Our results indicate that DAF-16 in the epidermis is required for survival after fungal infection and wounding. Thus, the EGL-30-Ca2+-BLI-3-CST-1-DAF-16 signaling represents a previously unknown pathway to regulate epidermal damage response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据