4.7 Article

Expression of a Cryptic Secondary Sigma Factor Gene Unveils Natural Competence for DNA Transformation in Staphylococcus aureus

期刊

PLOS PATHOGENS
卷 8, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1003003

关键词

-

资金

  1. Institut Pasteur
  2. European Commission [LHSM-CT-2006-019064]
  3. Centre National de la Recherche Scientifique [CNRS URA 2172]
  4. Japan Society for the Promotion of Science [18790301]
  5. Ichiro Kanehara Foundation [09KI202]
  6. Asahi Glass Foundation
  7. JSPS [FY2006]
  8. CNRS
  9. Grants-in-Aid for Scientific Research [18790301] Funding Source: KAKEN

向作者/读者索取更多资源

It has long been a question whether Staphylococcus aureus, a major human pathogen, is able to develop natural competence for transformation by DNA. We previously showed that a novel staphylococcal secondary sigma factor, SigH, was a likely key component for competence development, but the corresponding gene appeared to be cryptic as its expression could not be detected during growth under standard laboratory conditions. Here, we have uncovered two distinct mechanisms allowing activation of SigH production in a minor fraction of the bacterial cell population. The first is a chromosomal gene duplication rearrangement occurring spontaneously at a low frequency [<= 10(-5)], generating expression of a new chimeric sigH gene. The second involves post-transcriptional regulation through an upstream inverted repeat sequence, effectively suppressing expression of the sigH gene. Importantly, we have demonstrated for the first time that S. aureus cells producing active SigH become competent for transformation by plasmid or chromosomal DNA, which requires the expression of SigH-controlled competence genes. Additionally, using DNA from the N315 MRSA strain, we successfully transferred the full length SCCmecII element through natural transformation to a methicillin-sensitive strain, conferring methicillin resistance to the resulting S. aureus transformants. Taken together, we propose a unique model for staphylococcal competence regulation by SigH that could help explain the acquisition of antibiotic resistance genes through horizontal gene transfer in this important pathogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据