4.7 Article

Structural Basis for Functional Tetramerization of Lentiviral Integrase

期刊

PLOS PATHOGENS
卷 5, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1000515

关键词

-

资金

  1. NIH [AI070042]
  2. UK Medical Research Council [G0600009]
  3. MRC [G0600009] Funding Source: UKRI
  4. Medical Research Council [G0600009] Funding Source: researchfish

向作者/读者索取更多资源

Experimental evidence suggests that a tetramer of integrase ( IN) is the protagonist of the concerted strand transfer reaction, whereby both ends of retroviral DNA are inserted into a host cell chromosome. Herein we present two crystal structures containing the N-terminal and the catalytic core domains of maedi-visna virus IN in complex with the IN binding domain of the common lentiviral integration co-factor LEDGF. The structures reveal that the dimer-of-dimers architecture of the IN tetramer is stabilized by swapping N-terminal domains between the inner pair of monomers poised to execute catalytic function. Comparison of four independent IN tetramers in our crystal structures elucidate the basis for the closure of the highly flexible dimer-dimer interface, allowing us to model how a pair of active sites become situated for concerted integration. Using a range of complementary approaches, we demonstrate that the dimer-dimer interface is essential for HIV-1 IN tetramerization, concerted integration in vitro, and virus infectivity. Our structures moreover highlight adaptable changes at the interfaces of individual IN dimers that allow divergent lentiviruses to utilize a highly-conserved, common integration co-factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据