4.7 Article

Accelerated high fidelity prion amplification within and across prion species barriers

期刊

PLOS PATHOGENS
卷 4, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1000139

关键词

-

资金

  1. US Public Health Service [2RO1 NS040334- 04]
  2. National Institute of Neurological Disorders and Stroke [N01-AI-25491]
  3. National Institute of Allergy and Infectious Diseases [T32 AI49795]

向作者/读者索取更多资源

Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA). Characterization of this infectivity in Tg(CerPrP) mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP) mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra-and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据