4.5 Article

Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 8, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0002796

关键词

-

资金

  1. US Department of Defense Global Emerging Infections Surveillance and Response System (DoD-GEIS) Program
  2. University of North Carolina Research Council [UL1TR000083]
  3. National Institutes of Health [AI089819]
  4. UNC MD/PhD Program [T32 GM008719]
  5. Genetics Curriculum [T32 GM007092]
  6. Infectious Disease Society of America Medical Scholars Program

向作者/读者索取更多资源

Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens - Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines. Author Summary Plasmodium vivax causes tens of millions of malaria cases each year. Although some vaccines against P. vivax are being developed, little is known about the geospatial genetic diversity and selective constraints of the parasite surface antigens that these vaccines target. In order to create vaccines that are both efficacious and useful in diverse regions of the world, the strain diversity of these potential vaccine targets must be well understood. Specifically, we must understand whether and how the human immune system develops immunity against these antigens as well as understanding whether these antigens are similar in geographically diverse parasite populations. Here, using next-generation sequencing and population-genetic analyses, we found evidence of likely immune selection in specific regions of two leading vivax vaccine candidate antigens, PvMSP-1 and PvCSP. At the pvmsp-1 locus, we also found more genetic variability within populations than between populations, with some DNA sequences from geographically diverse populations being highly similar. In contrast, pvcsp sequences from geographically diverse populations are very distinct from one another, with specific sequence patterns occurring in certain geographic regions. Our findings provide new insights into the geographic genetic diversity of these two antigens and can help inform the development of effective P. vivax vaccines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据