4.5 Article

Odorant and Gustatory Receptors in the Tsetse Fly Glossina morsitans morsitans

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 8, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0002663

关键词

-

资金

  1. German Academic Exchange Service (DAAD)
  2. German Academic Exchange Service (DAAD) under icipe's African Regional Postgraduate Program in Insect Science (ARPPIS)
  3. South African Research Chairs Initiative of the Department of Science and Technology
  4. National Research Foundation of South Africa [64751]

向作者/读者索取更多资源

Author Summary Tsetse flies navigate their environments using chemosensory receptors, which permit them to locate hosts, mating partners, and resting and larviposition sites. The genome of G. m. morsitans was interrogated for coding genes of odorant receptors (ORs) and gustatory receptors (GRs) that express in antennae and maxillary palp, and detect the volatile and soluble chemical signals. The signals are then transmitted to the central nervous system and translated to phenotypes. Majority of these genes in G. m. morsitans were spread across different scaffolds, but a few were found to occur in clusters, which suggested possible co-regulation of their expression. The number of ORs and GRs were much reduced in the G. m. morsitans genome, including the apparent loss of receptors for sugar when compared to selected Diptera. There was also an apparent numerical expansion of some receptors, presumably to maximize on their restricted blood-meal diet. The annotation of the chemoreceptor package of G. m. morsitans provides a resource for investigating key activities of tsetse flies that could be exploited for their control. Tsetse flies use olfactory and gustatory responses, through odorant and gustatory receptors (ORs and GRs), to interact with their environment. Glossina morsitans morsitans genome ORs and GRs were annotated using homologs of these genes in Drosophila melanogaster and an ab initio approach based on OR and GR specific motifs in G. m. morsitans gene models coupled to gene ontology (GO). Phylogenetic relationships among the ORs or GRs and the homologs were determined using Maximum Likelihood estimates. Relative expression levels among the G. m. morsitans ORs or GRs were established using RNA-seq data derived from adult female fly. Overall, 46 and 14 putative G. m. morsitans ORs and GRs respectively were recovered. These were reduced by 12 and 59 ORs and GRs respectively compared to D. melanogaster. Six of the ORs were homologous to a single D. melanogaster OR (DmOr67d) associated with mating deterrence in females. Sweet taste GRs, present in all the other Diptera, were not recovered in G. m. morsitans. The GRs associated with detection of CO2 were conserved in G. m. morsitans relative to D. melanogaster. RNA-sequence data analysis revealed expression of GmmOR15 locus represented over 90% of expression profiles for the ORs. The G. m. morsitans ORs or GRs were phylogenetically closer to those in D. melanogaster than to other insects assessed. We found the chemoreceptor repertoire in G. m. morsitans smaller than other Diptera, and we postulate that this may be related to the restricted diet of blood-meal for both sexes of tsetse flies. However, the clade of some specific receptors has been expanded, indicative of their potential importance in chemoreception in the tsetse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据