4.5 Article

Proteomic Analysis of Excretory-Secretory Products of Heligmosomoides polygyrus Assessed with Next-Generation Sequencing Transcriptomic Information

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 5, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0001370

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Research Chairs (CRC)
  3. Canadian Institutes for Health Research (CIHR) [MOP-81169]
  4. Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT)-Centre for Host-Parasite Interactions

向作者/读者索取更多资源

The murine parasite Heligmosomoides polygyrus is a convenient experimental model to study immune responses and pathology associated with gastrointestinal nematode infections. The excretory-secretory products (ESP) produced by this parasite have potent immunomodulatory activity, but the protein(s) responsible has not been defined. Identification of the protein composition of ESP derived from H. polygyrus and other relevant nematode species has been hampered by the lack of genomic sequence information required for proteomic analysis based on database searches. To overcome this, a transcriptome next generation sequencing (RNA-seq) de novo assembly containing 33,641 transcripts was generated, annotated, and used to interrogate mass spectrometry (MS) data derived from 1D-SDS PAGE and LC-MS/MS analysis of ESP. Using the database generated from the 6 open reading frames deduced from the RNA-seq assembly and conventional identification programs, 209 proteins were identified in ESP including homologues of vitellogenins, retinol- and fatty acid-binding proteins, globins, and the allergen V5/Tpx-1-related family of proteins. Several potential immunomodulators, such as macrophage migration inhibitory factor, cysteine protease inhibitors, galectins, C-type lectins, peroxiredoxin, and glutathione S-transferase, were also identified. Comparative analysis of protein annotations based on the RNA-seq assembly and proteomics revealed processes and proteins that may contribute to the functional specialization of ESP, including proteins involved in signalling pathways and in nutrient transport and/or uptake. Together, these findings provide important information that will help to illuminate molecular, biochemical, and in particular immunomodulatory aspects of host-H. polygyrus biology. In addition, the methods and analyses presented here are applicable to study biochemical and molecular aspects of the host-parasite relationship in species for which sequence information is not available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据