4.6 Article

Fialuridine Induces Acute Liver Failure in Chimeric TK-NOG Mice: A Model for Detecting Hepatic Drug Toxicity Prior to Human Testing

期刊

PLOS MEDICINE
卷 11, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pmed.1001628

关键词

-

资金

  1. NIDDK [1R01DK0909921]
  2. Eli Lilly and Company through the Lilly Research Award Program (LRAP)

向作者/读者索取更多资源

Editors' Summary Background Before new drugs are approved for clinical use, they undergo extensive preclinical (laboratory-based) and clinical testing. In the preclinical studies, scientists investigate the causes of diseases, identify potential new drugs, and test promising drug candidates in animals. Animal testing is performed to determine whether the new drug is likely to work, and to screen for drug-induced toxicity. In preclinical toxicology studies, new drugs are given to two or more animal species to find out whether the drug has any short- or long-term toxic effects such as damage to the liver (hepatotoxicity). Drugs that pass these animal tests enter clinical trials. Phase I clinical trials test new drugs in a handful of healthy volunteers or patients to evaluate their safety and to identify possible side effects. In phase II trials, a larger group of patients receives the new drug to evaluate its safety further and to get an initial idea of its effectiveness. Finally, in phase III trials, very large groups of patients are randomly assigned to receive the new drug or an established treatment for their disease. These randomized controlled trials provide detailed information about the effectiveness and safety of a candidate drug, and must be completed before a drug can be approved for clinical use. Why Was This Study Done? ? Since animals are not perfect models for people, candidate drugs can cause toxicities in clinical trials that were not predicted by preclinical toxicology testing performed using animal species. For example, in 1993, 15 participants in a phase II trial were given a nucleoside analogue called fialuridine to treat hepatitis B virus infection (nucleoside analogues often have antiviral activity). Seven participants developed liver failure and lactic acidosis (buildup of lactic acid in the blood). Analysis of liver tissue from the affected participants revealed steatosis (fatty degeneration), intracellular fat droplets, and swollen mitochondria (these organelles are the powerhouses of the cell). Five participants subsequently died, and two had to have a liver transplant. In preclinical toxicology testing in mice, rats, dogs, and primates, there had been no indications that fialuridine would be hepatotoxic in people. It now seems that the expression of a nucleoside transporter in the mitochondria of humans but not of other animals may underlie the human-specific mitochondrial toxicity and hepatotoxicity of fialuridine. With several other nucleoside analogues in development, a better screening tool for human-specific mitochondrial toxicity is needed. In this study, the researchers investigate whether fialuridine toxicity can be detected in TK-NOG mice with chimeric (humanized) livers. TK-NOG mice are immunodeficient mice that have been genetically engineered so that human liver cells (hepatocytes) transplanted into these animals establish a long-lived mature human organ. What Did the Researchers Do and Find? ? The researchers treated chimeric (with transplanted human liver cells) and control (without transplanted human liver cells) TK-NOG mice with several doses of fialuridine. After treatment with the highest dose (1,600-fold above the dose used in the phase II trial) for four days, the chimeric mice developed liver failure and lactic acidosis. Moreover, steatosis and lipid and mitochondrial abnormalities developed in the regions of their livers that contained human hepatocytes but not in regions that contained mouse hepatocytes. Notably, the control mice had not developed liver toxicity after 14 days of treatment with the highest dose of drug. Liver toxicity was also easily detectable in chimeric mice that had been treated for 14 days with a fialuridine dose only 10-fold above that used in the human trial. Treatment with another nucleoside analogue that does not cause liver toxicity in people did not cause liver toxicity in the chimeric mice. What Do These Findings Mean? ? These findings show that fialuridine-induced liver toxicity can be readily detected using TK-NOG mice that have humanized livers at drug doses only 10-fold higher than those that caused liver failure in the phase II trial. Although the liver toxicity developed much more quickly in these mice than in the human trial participants, the clinical features, laboratory abnormalities, and structural changes seen in the fialuridine-treated chimeric TK-NOG mice closely mirrored those seen in fialuridine-treated people. The use of TK-NOG mice containing humanized livers in toxicology testing will not reveal whether drugs have human-specific toxicities outside the liver. Since they are highly immunocompromised, chimeric TK-NOG mice cannot be used to detect immune-mediated drug toxicities. Nevertheless, these findings suggest that the use of chimeric mice in toxicology studies could help improve the safety of candidate drugs that are tested in humans. Additional Information Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001628. The US Food and Drug Administration, the body that approves drugs for clinical use in the US, provides an overview for patients about the drug development process from the laboratory to the clinic The UK Medicines and Healthcare Products Regulatory Agency (MHRA) provides more detailed information for patients and the public about the drug development process, including a section on preclinical research, which includes information on animal testing The US National Institutes of Health provides information about clinical trials, including personal stories from people who have taken part in clinical trials The UK National Health Service Choices website has information for patients about clinical trials and medical research, including personal stories about participation in clinical trials Understanding Animal Research is a UK advocacy group that provides information about the importance of animal research to the public, teachers, scientists, journalists, and policy makers Wikipedia has a page on animal testing (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages) Background Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Methods and Findings Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. Conclusions FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve the safety of candidate medications selected for testing in human participants. Please see later in the article for the Editors' Summary

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据