4.6 Article

Genetic Background Drives Transcriptional Variation in Human Induced Pluripotent Stem Cells

期刊

PLOS GENETICS
卷 10, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1004432

关键词

-

资金

  1. EU
  2. Cambridge Hospitals National Institute for Health Research Biomedical Research Centre
  3. Wellcome Trust [098051]
  4. Engineering and Physical Sciences Research Council [TS/H001220/1] Funding Source: researchfish
  5. EPSRC [TS/H001220/1] Funding Source: UKRI

向作者/读者索取更多资源

Human iPS cells have been generated using a diverse range of tissues from a variety of donors using different reprogramming vectors. However, these cell lines are heterogeneous, which presents a limitation for their use in disease modeling and personalized medicine. To explore the basis of this heterogeneity we generated 25 iPS cell lines under normalised conditions from the same set of somatic tissues across a number of donors. RNA-seq data sets from each cell line were compared to identify the majority contributors to transcriptional heterogeneity. We found that genetic differences between individual donors were the major cause of transcriptional variation between lines. In contrast, residual signatures from the somatic cell of origin, so called epigenetic memory, contributed relatively little to transcriptional variation. Thus, underlying genetic background variation is responsible for most heterogeneity between human iPS cell lines. We conclude that epigenetic effects in hIPSCs are minimal, and that hIPSCs are a stable, robust and powerful platform for large-scale studies of the function of genetic differences between individuals. Our data also suggest that future studies using hIPSCs as a model system should focus most effort on collection of large numbers of donors, rather than generating large numbers of lines from the same donor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据