4.1 Article

Spatial regulation of phospholipid synthesis within the nuclear envelope domain of the endoplasmic reticulum

期刊

NUCLEUS
卷 6, 期 2, 页码 102-106

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/19491034.2015.1010942

关键词

endoplasmic reticulum; lipin; nuclear envelope; nuclear envelope breakdown; phosphatidylinositol

向作者/读者索取更多资源

The endoplasmic reticulum (ER) is an extensive membrane system that serves as a platform for de novo phospholipid synthesis. The ER is partitioned into distinct functional and structural domains, the most notable of which is the nuclear envelope. Here we discuss the role of nuclear envelope localized CNEP-1(Nem1) in spatial regulation of de novo phospholipid synthesis within the ER. CNEP-1(Nem1) is an activator of lipin(Pah1), which is the key phosphatidic acid phosphatase that regulates the metabolic branch-point between the production of phosphatidylinositol (PtdIns) and major membrane phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE). CNEP-1 activates lipin at the nuclear envelope to bias phospholipid flux toward PC and PE production and to limit PtdIns incorporation. Increased PtdIns causes the formation of ectopic ER sheets in the vicinity of the nucleus that wrap around the nuclear envelope and cause downstream defects in NE disassembly. We propose that spatial regulation of phospholipid flux promotes partitioning of the ER into distinct sub-domains by generating a gradient of PtdIns incorporation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据