4.6 Article

Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

期刊

PLOS GENETICS
卷 9, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1003911

关键词

-

资金

  1. Netherlands Bioinformatics Centre (NBIC)
  2. Netherlands Genomics Initiative
  3. KU Leuven
  4. ERC [260678]
  5. FWO
  6. European Union [HEALTH-241995]
  7. German Mental Retardation Network
  8. NGFN+ program of the German Federal Ministry of Education and Research (BMBF)
  9. NCMLS/RUNMC
  10. TOP [912-12-109]
  11. VIDI [917-96-346]
  12. Aspasia grants from the Netherlands Organization for Scientific Research
  13. European Research Council (ERC) [260678] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据