4.6 Article

UTX and UTY Demonstrate Histone Demethylase-Independent Function in Mouse Embryonic Development

期刊

PLOS GENETICS
卷 8, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1002964

关键词

-

资金

  1. NIH [GM101974, RR014817, GM087905]
  2. Grants-in-Aid for Scientific Research [23770131] Funding Source: KAKEN

向作者/读者索取更多资源

UTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous XUtx- Y+ mutant male embryos should phenocopy homozygous XUtx- XUtx- females. However, XUtx- Y+ mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X+ YUty- mutant males are viable. In contrast, compound hemizygous X Utx- YUty- males phenocopy homozygous XUtx- XUtx- females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据