4.6 Article

Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

期刊

PLOS GENETICS
卷 8, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1002834

关键词

-

资金

  1. Wellcome Trust [ME050495MES]
  2. Biotechnology and Biological Sciences Research Council (BBSRC) [BB/H008497/1]
  3. Erasmus programme
  4. Bundesministerium fur Bildung und Forschung
  5. Ellison Medical Foundation
  6. Marie Curie International Reintegration Grant within EC-FP7
  7. American Heart Association [09BGIA2290189]
  8. Biotechnology and Biological Sciences Research Council [BB/H008497/1] Funding Source: researchfish
  9. BBSRC [BB/H008497/1] Funding Source: UKRI

向作者/读者索取更多资源

Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led us to suggest that DR commonly suppresses translation, while stimulating an ancient reproduction-related process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据