4.6 Article

Nonredundant Requirement for Multiple Histone Modifications for the Early Anaphase Release of the Mitotic Exit Regulator Cdc14 from Nucleolar Chromatin

期刊

PLOS GENETICS
卷 5, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1000588

关键词

-

资金

  1. NIH [5R01GM071801]

向作者/读者索取更多资源

In Saccharomyces cerevisiae, the conserved phosphatase Cdc14 is required for the exit from mitosis. It is anchored on nucleolar chromatin by the Cfi1/Net1 protein until early anaphase, at which time it is released into the nucleoplasm. Two poorly understood, redundant pathways promote Cdc14 release, the FEAR (Cdc fourteen early release) network and the MEN (mitotic exit network). Through the analysis of genetic interactions, we report here a novel requirement for the ubiquitination of histone H2B by the Bre1 ubiquitin ligase in the cell cycle-dependent release of Cdc14 from nucleolar chromatin when the MEN is inactivated. This function for H2B ubiquitination is mediated by its activation of histone H3 methylation on lysines 4 and 79 (meH3K4 and meH3K79) but, surprisingly, is not dependent on the histone deacetylase (HDAC) Sir2, which associates with Cdc14 on nucleolar chromatin as part of the RENT complex. We also observed a defect in Cdc14 release in cells lacking H3 lysine 36 methylation (meH3K36) and in cells lacking an HDAC recruited by this modification. These histone modifications represent previously unappreciated factors required for the accessibility to and/or action on nucleolar chromatin of FEAR network components. The nonredundant role for these modifications in this context contrasts with the notion of a highly combinatorial code by which histone marks act to control biological processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据