4.6 Article

P-loop Conformation Governed Crizotinib Resistance in G2032R-Mutated ROS1 Tyrosine Kinase: Clues from Free Energy Landscape

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 10, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1003729

关键词

-

资金

  1. National Science Foundation of China [21173156]
  2. National Basic Research Program of China (973 program) [2012CB932600]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

向作者/读者索取更多资源

Tyrosine kinases are regarded as excellent targets for chemical drug therapy of carcinomas. However, under strong purifying selection, drug resistance usually occurs in the cancer cells within a short term. Many cases of drug resistance have been found to be associated with secondary mutations in drug target, which lead to the attenuated drug-target interactions. For example, recently, an acquired secondary mutation, G2032R, has been detected in the drug target, ROS1 tyrosine kinase, from a crizotinib-resistant patient, who responded poorly to crizotinib within a very short therapeutic term. It was supposed that the mutation was located at the solvent front and might hinder the drug binding. However, a different fact could be uncovered by the simulations reported in this study. Here, free energy surfaces were characterized by the drug-target distance and the phosphate-binding loop (P-loop) conformational change of the crizotinib-ROS1 complex through advanced molecular dynamics techniques, and it was revealed that the more rigid P-loop region in the G2032R-mutated ROS1 was primarily responsible for the crizotinib resistance, which on one hand, impaired the binding of crizotinib directly, and on the other hand, shortened the residence time induced by the flattened free energy surface. Therefore, both of the binding affinity and the drug residence time should be emphasized in rational drug design to overcome the kinase resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据