4.6 Article

Membrane Sculpting by F-BAR Domains Studied by Molecular Dynamics Simulations

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 9, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1002892

关键词

-

资金

  1. National Institutes of Health [R01-GM067887, P41-RR005969, U54-GM087519]
  2. National Science Foundation [OCI-1053575]
  3. Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]
  4. NATIONAL CENTER FOR RESEARCH RESOURCES [P41RR005969] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [U54GM087519, R01GM067887] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Interplay between cellular membranes and their peripheral proteins drives many processes in eukaryotic cells. Proteins of the Bin/Amphiphysin/Rvs (BAR) domain family, in particular, play a role in cellular morphogenesis, for example curving planar membranes into tubular membranes. However, it is still unclear how F-BAR domain proteins act on membranes. Electron microscopy revealed that, in vitro, F-BAR proteins form regular lattices on cylindrically deformed membrane surfaces. Using all-atom and coarse-grained (CG) molecular dynamics simulations, we show that such lattices, indeed, induce tubes of observed radii. A 250 ns all-atom simulation reveals that F-BAR domain curves membranes via the so-called scaffolding mechanism. Plasticity of the F-BAR domain permits conformational change in response to membrane interaction, via partial unwinding of the domains 3-helix bundle structure. A CG simulation covering more than 350 mu s provides a dynamic picture of membrane tubulation by lattices of F-BAR domains. A series of CG simulations identified the optimal lattice type for membrane sculpting, which matches closely the lattices seen through cryo-electron microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据