4.6 Article

Maximizing the Information Content of Experiments in Systems Biology

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 9, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1002888

关键词

-

资金

  1. Wellcome Trust
  2. MRC
  3. BBSRC [BB/G020434/1]
  4. BBSRC [BB/G001863/1, BB/G530268/1, BB/G007934/1] Funding Source: UKRI
  5. MRC [G1002092] Funding Source: UKRI
  6. Biotechnology and Biological Sciences Research Council [BB/G020434/1, BB/G007934/1, BB/G001863/1, BB/G530268/1] Funding Source: researchfish
  7. Medical Research Council [G1002092] Funding Source: researchfish

向作者/读者索取更多资源

Our understanding of most biological systems is in its infancy. Learning their structure and intricacies is fraught with challenges, and often side-stepped in favour of studying the function of different gene products in isolation from their physiological context. Constructing and inferring global mathematical models from experimental data is, however, central to systems biology. Different experimental setups provide different insights into such systems. Here we show how we can combine concepts from Bayesian inference and information theory in order to identify experiments that maximize the information content of the resulting data. This approach allows us to incorporate preliminary information; it is global and not constrained to some local neighbourhood in parameter space and it readily yields information on parameter robustness and confidence. Here we develop the theoretical framework and apply it to a range of exemplary problems that highlight how we can improve experimental investigations into the structure and dynamics of biological systems and their behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据