4.6 Article

Protrusive Push versus Enveloping Embrace: Computational Model of Phagocytosis Predicts Key Regulatory Role of Cytoskeletal Membrane Anchors

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 7, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1001068

关键词

-

资金

  1. US National Institutes of Health [R01 A1072391]
  2. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI072391] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Encounters between human neutrophils and zymosan elicit an initially protrusive cell response that is distinct from the thin lamella embracing antibody-coated targets. Recent experiments have led us to hypothesize that this behavior has its mechanistic roots in the modulation of interactions between membrane and cytoskeleton. To test and refine this hypothesis, we confront our experimental results with predictions of a computer model of leukocyte mechanical behavior, and establish the minimum set of mechanistic variations of this computational framework that reproduces the differences between zymosan and antibody phagocytosis. We confirm that the structural linkages between the cytoskeleton and the membrane patch adherent to a target form the switchboard that controls the target specificity of a neutrophil's mechanical response. These linkages are presumably actin-binding protein complexes associating with the cytoplasmic domains of cell-surface receptors that are engaged in adhesion to zymosan and Fc-domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据