4.6 Article

Induced Effects of Sodium Ions on Dopaminergic G-Protein Coupled Receptors

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 6, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1000884

关键词

-

资金

  1. EU [091010]
  2. HERACLES [RD06/0009]
  3. COMBIOMED [RD07/0067]
  4. Ministerio de Educacion y Ciencia [SAF2009-13609-C04-04]
  5. Ramon y Cajal scheme
  6. Spanish Ministry of Science and Innovation [FIS2008-01040]

向作者/读者索取更多资源

G-protein coupled receptors, the largest family of proteins in the human genome, are involved in many complex signal transduction pathways, typically activated by orthosteric ligand binding and subject to allosteric modulation. Dopaminergic receptors, belonging to the class A family of G-protein coupled receptors, are known to be modulated by sodium ions from an allosteric binding site, although the details of sodium effects on the receptor have not yet been described. In an effort to understand these effects, we performed microsecond scale all-atom molecular dynamics simulations on the dopaminergic D-2 receptor, finding that sodium ions enter the receptor from the extracellular side and bind at a deep allosteric site (Asp2.50). Remarkably, the presence of a sodium ion at this allosteric site induces a conformational change of the rotamer toggle switch Trp6.48 which locks in a conformation identical to the one found in the partially inactive state of the crystallized human beta(2) adrenergic receptor. This study provides detailed quantitative information about binding of sodium ions in the D-2 receptor and reports a possibly important sodium-induced conformational change for modulation of D-2 receptor function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据