4.6 Article

Shunting Inhibition Controls the Gain Modulation Mediated by Asynchronous Neurotransmitter Release in Early Development

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 6, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1000973

关键词

-

资金

  1. Howard Hughes Medical Institute
  2. NSF Center for Theoretical Biological Physics [PHY-0822283]
  3. NIH [MH079076]

向作者/读者索取更多资源

The sensitivity of a neuron to its input can be modulated in several ways. Changes in the slope of the neuronal input-output curve depend on factors such as shunting inhibition, background noise, frequency-dependent synaptic excitation, and balanced excitation and inhibition. However, in early development GABAergic interneurons are excitatory and other mechanisms such as asynchronous transmitter release might contribute to regulating neuronal sensitivity. We modeled both phasic and asynchronous synaptic transmission in early development to study the impact of activity-dependent noise and short-term plasticity on the synaptic gain. Asynchronous release decreased or increased the gain depending on the membrane conductance. In the high shunt regime, excitatory input due to asynchronous release was divisive, whereas in the low shunt regime it had a nearly multiplicative effect on the firing rate. In addition, sensitivity to correlated inputs was influenced by shunting and asynchronous release in opposite ways. Thus, asynchronous release can regulate the information flow at synapses and its impact can be flexibly modulated by the membrane conductance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据