4.6 Article

A Differential Wiring Analysis of Expression Data Correctly Identifies the Gene Containing the Causal Mutation

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 5, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1000382

关键词

-

资金

  1. Food Futures Flagship and Livestock Industries, Commonwealth Science and Industrial Research Organisation

向作者/读者索取更多资源

Transcription factor (TF) regulation is often post-translational. TF modifications such as reversible phosphorylation and missense mutations, which can act independent of TF expression level, are overlooked by differential expression analysis. Using bovine Piedmontese myostatin mutants as proof-of-concept, we propose a new algorithm that correctly identifies the gene containing the causal mutation from microarray data alone. The myostatin mutation releases the brakes on Piedmontese muscle growth by translating a dysfunctional protein. Compared to a less muscular non-mutant breed we find that myostatin is not differentially expressed at any of ten developmental time points. Despite this challenge, the algorithm identifies the myostatin smoking gun' through a coordinated, simultaneous, weighted integration of three sources of microarray information: transcript abundance, differential expression, and differential wiring. By asking the novel question which regulator is cumulatively most differentially wired to the abundant most differentially expressed genes? it yields the correct answer, myostatin. Our new approach identifies causal regulatory changes by globally contrasting co-expression network dynamics. The entirely data-driven 'weighting' procedure emphasises regulatory movement relative to the phenotypically relevant part of the network. In contrast to other published methods that compare co-expression networks, significance testing is not used to eliminate connections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据