4.6 Article

Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 5, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1000553

关键词

-

资金

  1. National Institutes of Health [GM080223, HG003053, HL66621, R37HL059502, R33HL088266]
  2. Agilent Technologies Foundation
  3. Mathers Charitable Foundation
  4. California Institute for Regenerative Medicine (CIRM) [RC1-00132-1]

向作者/读者索取更多资源

The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据