4.6 Article

Model-based hypothesis testing of key mechanisms in initial phase of insulin signaling

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 4, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1000096

关键词

-

资金

  1. Ostergotland County Council
  2. Novo Nordisk Foundation
  3. Swedish Diabetes Association
  4. European Commission Network of Excellence Biosim
  5. Swedish Research Council

向作者/读者索取更多资源

Type 2 diabetes is characterized by insulin resistance of target organs, which is due to impaired insulin signal transduction. The skeleton of signaling mediators that provide for normal insulin action has been established. However, the detailed kinetics, and their mechanistic generation, remain incompletely understood. We measured time-courses in primary human adipocytes for the short-term phosphorylation dynamics of the insulin receptor (IR) and the IR substrate-1 in response to a step increase in insulin concentration. Both proteins exhibited a rapid transient overshoot in tyrosine phosphorylation, reaching maximum within 1 min, followed by an intermediate steady-state level after approximately 10 min. We used model-based hypothesis testing to evaluate three mechanistic explanations for this behavior: (A) phosphorylation and dephosphorylation of IR at the plasma membrane only; (B) the additional possibility for IR endocytosis; (C) the alternative additional possibility of feedback signals to IR from downstream intermediates. We concluded that (A) is not a satisfactory explanation; that (B) may serve as an explanation only if both internalization, dephosphorylation, and subsequent recycling are permitted; and that (C) is acceptable. These mechanistic insights cannot be obtained by mere inspection of the datasets, and they are rejections and thus stronger and more final conclusions than ordinary model predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据