4.6 Article

Canonical PRC2 function is essential for mammary gland development and affects chromatin compaction in mammary organoids

期刊

PLOS BIOLOGY
卷 16, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.2004986

关键词

-

资金

  1. National Health and Medical Research Council [1016701, 1024852, 1086727, 1054618, 1113577]
  2. IRIISS
  3. National Breast Cancer Foundation [ECF-15-002]
  4. [1058344]
  5. [1078730]
  6. [1058892]
  7. [1102742]
  8. National Health and Medical Research Council of Australia [1086727] Funding Source: NHMRC
  9. National Breast Cancer Foundation [ECF-15-002] Funding Source: researchfish

向作者/读者索取更多资源

Distinct transcriptional states are maintained through organization of chromatin, resulting from the sum of numerous repressive and active histone modifications, into tightly packaged heterochromatin versus more accessible euchromatin. Polycomb repressive complex 2 (PRC2) is the main mammalian complex responsible for histone 3 lysine 27 trimethylation (H3K27me3) and is integral to chromatin organization. Using in vitro and in vivo studies, we show that deletion of Suz12, a core component of all PRC2 complexes, results in loss of H3K27me3 and H3K27 dimethylation (H3K27me2), completely blocks normal mammary gland development, and profoundly curtails progenitor activity in 3D organoid cultures. Through the application of mammary organoids to bypass the severe phenotype associated with Suz12 loss in vivo, we have explored gene expression and chromatin structure in wildtype and Suz12-deleted basal-derived organoids. Analysis of organoids led to the identification of lineage-specific changes in gene expression and chromatin structure, inferring cell type - specific PRC2-mediated gene silencing of the chromatin state. These expression changes were accompanied by cell cycle arrest but not lineage infidelity. Together, these data indicate that canonical PRC2 function is essential for development of the mammary gland through the repression of alternate transcription programs and maintenance of chromatin states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据