4.6 Article

PICK1 and ICA69 Control Insulin Granule Trafficking and Their Deficiencies Lead to Impaired Glucose Tolerance

期刊

PLOS BIOLOGY
卷 11, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.1001541

关键词

-

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [663709, 663310, HKUST6/CRF/08, HKUST10/CRF/12R, HKUST10/CRF/11G, RPC07/08.SC09, T13-607/12R]

向作者/读者索取更多资源

Diabetes is a metabolic disorder characterized by hyperglycemia. Insulin, which is secreted by pancreatic beta cells, is recognized as the critical regulator of blood glucose, but the molecular machinery responsible for insulin trafficking remains poorly defined. In particular, the roles of cytosolic factors that govern the formation and maturation of insulin granules are unclear. Here we report that PICK1 and ICA69, two cytosolic lipid-binding proteins, formed heteromeric BAR-domain complexes that associated with insulin granules at different stages of their maturation. PICK1-ICA69 heteromeric complexes associated with immature secretory granules near the trans-Golgi network (TGN). A brief treatment of Brefeldin A, which blocks vesicle budding from the Golgi, increased the amount of PICK1 and ICA69 at TGN. On the other hand, mature secretory granules were associated with PICK1 only, not ICA69. PICK1 deficiency in mice caused the complete loss of ICA69 and led to increased food and water intake but lower body weight. Glucose tolerance tests demonstrated that these mutant mice had high blood glucose, a consequence of insufficient insulin. Importantly, while the total insulin level was reduced in PICK1-deficient beta cells, proinsulin was increased. Lastly, ICA69 knockout mice also displayed similar phenotype as the mice deficient in PICK1. Together, our results indicate that PICK1 and ICA69 are key regulators of the formation and maturation of insulin granules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据