4.6 Article

High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIα as a Clock Regulatory Kinase

期刊

PLOS BIOLOGY
卷 8, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.1000559

关键词

-

资金

  1. National Institutes of Health [R01 GM074868, R01 MH051573, GM074868, MH51573]
  2. Skaggs Institute for Chemical Biology

向作者/读者索取更多资源

The circadian clock underlies daily rhythms of diverse physiological processes, and alterations in clock function have been linked to numerous pathologies. To apply chemical biology methods to modulate and dissect the clock mechanism with new chemical probes, we performed a circadian screen of similar to 120,000 uncharacterized compounds on human cells containing a circadian reporter. The analysis identified a small molecule that potently lengthens the circadian period in a dose-dependent manner. Subsequent analysis showed that the compound also lengthened the period in a variety of cells from different tissues including the mouse suprachiasmatic nucleus, the central clock controlling behavioral rhythms. Based on the prominent period lengthening effect, we named the compound longdaysin. Longdaysin was amenable for chemical modification to perform affinity chromatography coupled with mass spectrometry analysis to identify target proteins. Combined with siRNA-mediated gene knockdown, we identified the protein kinases CKI delta, CKI alpha, and ERK2 as targets of longdaysin responsible for the observed effect on circadian period. Although individual knockdown of CKI delta, CKI alpha, and ERK2 had small period effects, their combinatorial knockdown dramatically lengthened the period similar to longdaysin treatment. We characterized the role of CKI alpha in the clock mechanism and found that CKI alpha-mediated phosphorylation stimulated degradation of a clock protein PER1, similar to the function of CKI delta. Longdaysin treatment inhibited PER1 degradation, providing insight into the mechanism of longdaysin-dependent period lengthening. Using larval zebrafish, we further demonstrated that longdaysin drastically lengthened circadian period in vivo. Taken together, the chemical biology approach not only revealed CKI alpha as a clock regulatory kinase but also identified a multiple kinase network conferring robustness to the clock. Longdaysin provides novel possibilities in manipulating clock function due to its ability to simultaneously inhibit several key components of this conserved network across species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据