4.4 Article

The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface

期刊

MICROBIOLOGYOPEN
卷 4, 期 6, 页码 917-930

出版社

WILEY
DOI: 10.1002/mbo3.301

关键词

Adhesin; biofilm; c-di-GMP; protease; Pseudomonas

资金

  1. Danish Council for Independent Research [DFF-1323-00177]
  2. Danish Council for Strategic Research

向作者/读者索取更多资源

Pseudomonas aeruginosa is a clinically relevant species involved in biofilm-based chronic infections. We provide evidence that the P. aeruginosa LapG protein functions as a periplasmic protease that can cleave the protein adhesin CdrA off the cell surface, and thereby plays a role in biofilm formation and biofilm dispersal. The P. aeruginosa LapG protein is shown to be a functional homolog of the Pseudomonas putida LapG protein which has previously been shown to function as a periplasmic protease that targets the surface adhesin LapA. Transposon mutagenesis and characterization of defined knockout mutants provided evidence that the CdrA adhesin is a target of LapG in P. aeruginosa. A wspF lapG double mutant was hyper-aggregating and hyper biofilm forming, whereas a wspF lapG cdrA triple mutant lost these phenotypes. In addition, western blot detection of CdrA in culture supernatants and whole-cell protein fractions showed that CdrA was retained in the whole-cell protein fraction when LapG was absent, whereas it was found in the culture supernatant when LapG was present. The finding that CdrA is a target of LapG in P. aeruginosa is surprising because CdrA has no homology to LapA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据