4.6 Article

The evolution of combinatorial gene regulation in fungi

期刊

PLOS BIOLOGY
卷 6, 期 2, 页码 352-364

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.0060038

关键词

-

向作者/读者索取更多资源

It is widely suspected that gene regulatory networks are highly plastic. The rapid turnover of transcription factor binding sites has been predicted on theoretical grounds and has been experimentally demonstrated in closely related species. We combined experimental approaches with comparative genomics to focus on the role of combinatorial control in the evolution of a large transcriptional circuit in the fungal lineage. Our study centers on Mcm1, a transcriptional regulator that, in combination with five cofactors, binds roughly 4% of the genes in Saccharomyces cerevisiae and regulates processes ranging from the cell-cycle to mating. In Kluyveromyces lactis and Candida albicans, two other hemiascomycetes, we find that the Mcm1 combinatorial circuits are substantially different. This massive rewiring of the Mcm1 circuitry has involved both substantial gain and loss of targets in ancient combinatorial circuits as well as the formation of new combinatorial interactions. We have dissected the gains and losses on the global level into subsets of functionally and temporally related changes. One particularly dramatic change is the acquisition of Mcm1 binding sites in close proximity to Rap1 binding sites at 70 ribosomal protein genes in the K. lactis lineage. Another intriguing and very recent gain occurs in the C. albicans lineage, where Mcm1 is found to bind in combination with the regulator Wor1 at many genes that function in processes associated with adaptation to the human host, including the white-opaque epigenetic switch. The large turnover of Mcm1 binding sites and the evolution of new Mcm1-cofactor interactions illuminate in sharp detail the rapid evolution of combinatorial transcription networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据