4.6 Article

Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program

期刊

PLANT GENOME
卷 4, 期 1, 页码 65-75

出版社

CROP SCIENCE SOC AMER
DOI: 10.3835/plantgenome2010.12.0029

关键词

-

资金

  1. USDA National Needs Graduate Fellowship Competitive Grant from National Institute of Food and Agriculture [2005-38420-15785]
  2. USDA-NIFA [2009-85606-05701, 2009-65300-05661]
  3. USDA-NIFA National Research Initiative CAP grant [2005-05130]
  4. Hatch [149-402]
  5. NIFA [581778, 2009-85606-05701, 687678, 2009-65300-05661] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Genomic selection (GS) uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotypes of lines from each cross before conducting GS. This will prolong the selection cycle and may result in lower gains per year than approaches that estimate marker-effects with multiple families from previous selection cycles. In this study, phenotypic selection (PS), conventional marker-assisted selection (MAS), and GS prediction accuracy were compared for 13 agronomic traits in a population of 374 winter wheat (Triticum aestivum L.) advanced-cycle breeding lines. A cross-validation approach that trained and validated prediction accuracy across years was used to evaluate effects of model selection, training population size, and marker density in the presence of genotype x environment interactions (GxE). The average prediction accuracies using GS were 28% greater than with MAS and were 95% as accurate as PS. For net merit, the average accuracy across six selection indices for GS was 14% greater than for PS. These results provide empirical evidence that multifamily GS could increase genetic gain per unit time and cost in plant breeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据