4.7 Article

Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields

期刊

PHYSICAL REVIEW X
卷 4, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.4.031027

关键词

-

资金

  1. IFRAF
  2. ANR (AGAFON)
  3. European Research Council Synergy Grant UQUAM

向作者/读者索取更多资源

Driving a quantum system periodically in time can profoundly alter its long-time dynamics and trigger topological order. Such schemes are particularly promising for generating nontrivial energy bands and gauge structures in quantum-matter systems. Here, we develop a general formalism that captures the essential features ruling the dynamics: the effective Hamiltonian, but also the effects related to the initial phase of the modulation and the micromotion. This framework allows for the identification of driving schemes, based on general N-step modulations, which lead to configurations relevant for quantum simulation. In particular, we explore methods to generate synthetic spin-orbit couplings and magnetic fields in cold-atom setups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据