4.7 Article

Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics

期刊

PHYSICAL REVIEW X
卷 4, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.4.041010

关键词

-

资金

  1. European Research Council (ERC)
  2. Swiss National Science Foundation through the National Center of Competence in Research Quantum Science and Technology
  3. ETH Zurich

向作者/读者索取更多资源

Large-scale quantum information processors or quantum communication networks will require reliable exchange of information between spatially separated nodes. The links connecting these nodes can be established using traveling photons that need to be absorbed at the receiving node with high efficiency. This is achievable by shaping the temporal profile of the photons and absorbing them at the receiver by time reversing the emission process. Here, we demonstrate a scheme for creating shaped microwave photons using a superconducting transmon-type three-level system coupled to a transmission line resonator. In a second-order process induced by a modulated microwave drive, we controllably transfer a single excitation from the third level of the transmon to the resonator and shape the emitted photon. We reconstruct the density matrices of the created single-photon states and show that the photons are antibunched. We also create multipeaked photons with a controlled amplitude and phase. In contrast to similar existing schemes, the one we present here is based solely on microwave drives, enabling operation with fixed frequency transmons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据