4.7 Article

Error Correction for Non-Abelian Topological Quantum Computation

期刊

PHYSICAL REVIEW X
卷 4, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.4.011051

关键词

-

资金

  1. Swiss NF
  2. NCCR QSIT

向作者/读者索取更多资源

The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S-3). This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straight forward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据