4.7 Article

Laser Theory for Optomechanics: Limit Cycles in the Quantum Regime

期刊

PHYSICAL REVIEW X
卷 4, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.4.011015

关键词

-

资金

  1. Centre for Quantum Engineering and Space-Time Research (QUEST) at the Leibniz University of Hannover
  2. European Community (FP7-Programme) through iQUOEMS [323924]

向作者/读者索取更多资源

Optomechanical systems can exhibit self-sustained limit cycles where the quantum state of the mechanical resonator possesses nonclassical characteristics such as a strongly negative Wigner density, as was shown recently in a numerical study by Qian et al. [Phys. Rev. Lett. 109, 253601 (2012)]. Here, we derive a Fokker-Planck equation describing mechanical limit cycles in the quantum regime that correctly reproduces the numerically observed nonclassical features. The derivation starts from the standard optomechanical master equation and is based on techniques borrowed from the laser theory due to Haake and Lewenstein. We compare our analytical model with numerical solutions of the master equation based on Monte Carlo simulations and find very good agreement over a wide and so far unexplored regime of system parameters. As one main conclusion, we predict negative Wigner functions to be observable even for surprisingly classical parameters, i.e., outside the single-photon strong-coupling regime, for strong cavity drive and rather large limit-cycle amplitudes. The approach taken here provides a natural starting point for further studies of quantum effects in optomechanics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据