4.7 Article

Long-Distance Spin-Spin Coupling via Floating Gates

期刊

PHYSICAL REVIEW X
卷 2, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.2.011006

关键词

-

资金

  1. Swiss NSF
  2. NCCR's Nanoscience
  3. QSIT
  4. DARPA
  5. IARPA/MQCO program
  6. U. S. Army Research Office [W911NF-11-1-0068]
  7. NSF [DMR-0840965]

向作者/读者索取更多资源

The electron spin is a natural two-level system that allows a qubit to be encoded. When localized in a gate-defined quantum dot, the electron spin provides a promising platform for a future functional quantum computer. The essential ingredient of any quantum computer is entanglement-for the case of electronspin qubits considered here-commonly achieved via the exchange interaction. Nevertheless, there is an immense challenge as to how to scale the system up to include many qubits. In this paper, we propose a novel architecture of a large-scale quantum computer based on a realization of long-distance quantum gates between electron spins localized in quantum dots. The crucial ingredients of such a long-distance coupling are floating metallic gates that mediate electrostatic coupling over large distances. We show, both analytically and numerically, that distant electron spins in an array of quantum dots can be coupled selectively, with coupling strengths that are larger than the electron-spin decay and with switching times on the order of nanoseconds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据