4.1 Article

Simultaneous measurement of heroin and its metabolites in brain extracellular fluid by microdialysis and ultra performance liquid chromatography tandem mass spectrometry

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.vascn.2012.04.009

关键词

Heroin; Metabolite kinetics; Microdialysis; Opiates; Pharmacokinetics; Retrodialysis

资金

  1. Norwegian Research Council [196621/V50]

向作者/读者索取更多资源

Introduction: The pharmacokinetic profile and systemic bioavailability of a substance is often described by blood or total tissue concentrations. For centrally acting drugs, like opioids, the free fraction of active compound in brain extracellular fluid (ECF) is more likely to be correlated to the pharmacodynamic effects than the blood concentrations. Drugs of abuse, like heroin, are often administered intravenously as bolus injections, and the blood concentrations might change rapidly due to metabolism and distribution. The aim of our study was to establish a method to measure the free fraction of heroin and its metabolites in brain ECF, and follow their fast changes in concentration. Methods: Sprague-Dawley rats were injected intravenously with a bolus of heroin. Heroin and its main metabolites 6-monoacetylmorphine, morphine and morphine-3-glucuronide were measured simultaneously. Brain microdialysis was used for sampling and a method for quantification using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed. Deuterated analogues for each analyte were included in the microdialysis perfusion solution as calibrators for recovery estimation. Results: A highly sensitive UPLC-MS/MS method allowed short sampling intervals, down to one minute, and the simultaneous detection of each analyte and its specific deuterated analogues, making possible the individual recovery calculation for each compound of interest. This method allowed us to determine the pharmacokinetic profiles of heroin and its metabolites in brain-ECF in the same animal after an intravenous injection of heroin. Discussion: Our method makes detecting concurrently the rapid changes in concentrations of heroin and its metabolites in brain ECF possible, despite the rapid metabolism of heroin. Recovery was measured specifically for each analyte in the same sample by carefully combining different deuterated analogues. This technique can be applied to pharmacokinetic studies where more than one compound of interest has to be monitored, and to study distribution of prodrugs or drugs with active metabolites. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据