4.6 Article

The GASS/EUCLIPSE model intercomparison of the stratocumulus transition as observed during ASTEX: LES results

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/jame.20033

关键词

stratocumulus transition; model intercomparison; ASTEX; large-eddy simulation (LES); GASS; EUCLIPSE

资金

  1. European Union [244067]
  2. National Computing Facilities Foundation (NCF)

向作者/读者索取更多资源

Large-eddy simulations of a Lagrangian transition from a vertically well-mixed stratocumulus-topped boundary layer to a situation in which shallow cumuli penetrate an overlying layer of thin and broken stratocumulus are compared with aircraft observations collected during the Atlantic Stratocumulus Transition Experiment. Despite the complexity of the case and the long simulation period of 40 h, the six participating state-of-the-art models skillfully and consistently represent the observed gradual deepening of the boundary layer, a negative buoyancy flux at the top of the subcloud layer and the development of a double-peaked vertical velocity variance profile. The moisture flux from the subcloud to the stratocumulus cloud layer by cumulus convection exhibits a distinct diurnal cycle. During the night the moisture flux at the stratocumulus cloud base exceeds the surface evaporation flux, causing a net drying of the subcloud layer, and vice versa during daytime. The spread in the liquid water path (LWP) among the models is rather large during the first 12 h. From additional sensitivity experiments it is demonstrated that this spread is mainly attributable to differences in the parameterized precipitation rate. The LWP differences are limited through a feedback mechanism in which enhanced drizzle fluxes result in lower entrainment rates and subsequently a reduced drying at cloud top. The spread is furthermore reduced during the day as cloud layers with a greater LWP absorb more solar radiation and hence evaporate more.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据