4.6 Article

A design and an application of a regional coupled atmosphere-ocean model for tropical cyclone prediction

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2012MS000172

关键词

-

向作者/读者索取更多资源

The prediction of tropical cyclone (TC) track has improved greatly in recent decades due in part to the implementation and improvement of numerical weather prediction (NWP) models. However, the prediction of TC intensity using NWP models remains difficult. Several hypotheses have been proposed to explain the factors contributing to the TC intensity prediction errors and one of the leading candidates is the implication of an evolving sea-surface temperature (SST) boundary condition beneath the TC. In this study, a regional scale coupled atmosphere-ocean model is developed using the Advanced Research Weather Research and Forecasting (ARW) model and the HYbrid Coordinate Ocean Model (HYCOM). A coupling algorithm and a methodology to define appropriate ocean initial conditions are provided. Experiments are conducted, during the lifecycle of TC Ike (2008), using both the coupled-model and static (e.g., temporally fixed) SST to illustrate the impacts of the coupled-model for the TC track, intensity, and structure, as well as upon the larger (synoptic) scale. The results from this study suggest that the impact of the evolving SST (e.g., from a coupled atmosphere-ocean model) begin to impact the intensity, size, and thermodynamic structure for TC Ike (2008) at forecast lead-times beyond 48-hours. Further, the forecast trajectories (i.e., tracks) do not illustrate large differences between the non-coupled and coupled-models. Finally, the impact of the SST boundary condition upon TC Ike (2008) appears to be a function of the strength of the atmospheric forcing - in particular the size and intensity of the TC wind field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据