4.1 Article

Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data

期刊

出版社

MULTI-SCIENCE PUBL CO LTD
DOI: 10.1260/1756-8293.5.4.273

关键词

-

向作者/读者索取更多资源

This paper presents an approach to the system identification of the Delfly II Flapping Wing Micro Air Vehicle (FWMAV) using flight test data. It aims at providing simple FWMAV aerodynamic models that can be used in simulations as well as in nonlinear flight control systems. The undertaken methodology builds on normal aircraft system identification methods and extends these with techniques that are specific to FWMAV model identification. The entire aircraft model identification cycle is discussed covering the set-up and automatic execution of the flight test experiments, the aircraft states, the aerodynamic forces and moments' reconstruction, the aerodynamic model structure selection, the parameter estimation and finally, the model validation. In particular, a motion capturing facility was used to record the flapper's position in time and from there compute the states and aerodynamic forces and moments that acted on it, assuming flapaveraged dynamics and linear aerodynamic model structures. It is shown that the approach leads to aerodynamic models that can predict the aerodynamic forces with high accuracy. Despite less accurate, the predictions of the aerodynamic moments still follow the general trend of the measured moments. Dynamic simulations based on the identified aerodynamic models show flight trajectories that closely match the ground truth spanning a number of flapping cycles. Finally, the dimensional aerodynamic forces and moments' coefficients of two of the identified aerodynamic models are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据