4.4 Article

Identification of material parameters of the Gurson-Tvergaard-Needleman damage law by combined experimental, numerical sheet metal blanking techniques and artificial neural networks approach

期刊

INTERNATIONAL JOURNAL OF MATERIAL FORMING
卷 5, 期 2, 页码 147-155

出版社

SPRINGER FRANCE
DOI: 10.1007/s12289-011-1035-x

关键词

Blanking; Damage; Artificial neural networks; Finite elements method

向作者/读者索取更多资源

This paper presents a method for the identification of coupled damage model parameters in sheet metal blanking and a study of their sensitivity to the blanking clearance. The existing finite element models easily describe the elastoplastic behaviour occurring during the sheet metal blanking. However, the description of the damage evolution is much more delicate to appreciate. The proposed method combines finite element method (FEM) with artificial neural networks (ANN) analysis in order to identify the values of the Gurson-Tvergaard-Needleman (GTN) parameters. The blanking tests are carried out to obtain the experimental material response under loading (blanking force-blanking penetration curves). A finite element model is used to compute the load displacement curve depending on a systematic variation of GTN parameters. Via a full factorial design, a numerical database is built up and is used for the ANN training. The identification of the damage properties (for a fixed clearance) is done by minimizing the error between an experimental load displacement curve and a predicted one by the ANN function. The identified damage law parameters are validated on the other experimental configurations of blanking tests (fixed clearance, different punch velocities). Varying the blanking clearance allows us to study its impact on the damage law parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据