4.3 Article

A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations

出版社

MDPI
DOI: 10.3390/ijerph10051698

关键词

Aedes albopictus; arbovirus; population dynamics; modelling; sensitivity analysis

资金

  1. European Life+ project (Integrated Mosquito Control Management) [LIFE08/ENV/F/000488]

向作者/读者索取更多资源

The mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) is an invasive species which has colonized Southern Europe in the last two decades. As it is a competent vector for several arboviruses, its spread is of increasing public health concern, and there is a need for appropriate monitoring tools. In this paper, we have developed a modelling approach to predict mosquito abundance over time, and identify the main determinants of mosquito population dynamics. The model is temperature-and rainfall-driven, takes into account egg diapause during unfavourable periods, and was used to model the population dynamics of Ae. albopictus in the French Riviera since 2008. Entomological collections of egg stage from six locations in Nice conurbation were used for model validation. We performed a sensitivity analysis to identify the key parameters of the mosquito population dynamics. Results showed that the model correctly predicted entomological field data (Pearson r correlation coefficient values range from 0.73 to 0.93). The model's main control points were related to adult's mortality rates, the carrying capacity in pupae of the environment, and the beginning of the unfavourable period. The proposed model can be efficiently used as a tool to predict Ae. albopictus population dynamics, and to assess the efficiency of different control strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据