4.3 Article

A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease

期刊

JOURNAL OF BIOLOGICAL DYNAMICS
卷 9, 期 1, 页码 52-72

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17513758.2015.1005698

关键词

individual-based model; patch; network; chikungunya; mosquito-borne disease; dengue; differential equationsmodel; 92D30; 37C10; 92D40

资金

  1. NIH/NIGMS grant in the Models of Infectious Disease Agent Study (MIDAS) program [U01-GM097661-01]
  2. NSF MPS Division of Mathematical Sciences NSF/MPS/DMS grant [DMS-1122666]
  3. NSF SEES Fellow grant [CHE-1314029]
  4. NIH/NIGMS MIDAS grant [U01-GM097658]
  5. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [U01GM097658, U01GM097661] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Mosquito-borne diseases cause significant public health burden and are widely re-emerging or emerging. Understanding, predicting, and mitigating the spread of mosquito-borne disease in diverse populations and geographies are ongoing modelling challenges. We propose a hybrid network-patch model for the spread of mosquito-borne pathogens that accounts for individual movement through mosquito habitats, extending the capabilities of existing agent-based models (ABMs) to include vector-borne diseases. The ABM are coupled with differential equations representing 'clouds' of mosquitoes in patches accounting for mosquito ecology. We adapted an ABM for humans using this method and investigated the importance of heterogeneity in pathogen spread, motivating the utility of models of individual behaviour. We observed that the final epidemic size is greater in patch models with a high risk patch frequently visited than in a homogeneous model. Our hybrid model quantifies the importance of the heterogeneity in the spread of mosquito-borne pathogens, guiding mitigation strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据