4.6 Article

EGCG Nanoparticles Attenuate Aluminum Chloride Induced Neurobehavioral Deficits, Beta Amyloid and Tau Pathology in a Rat Model of Alzheimer's Disease

期刊

FRONTIERS IN AGING NEUROSCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnagi.2018.00244

关键词

Alzheimer disease; aluminum chloride; EGCG; nanoparticles; neurobehavioral impairments; neuritic plaques; neurofibrillary tangles

资金

  1. VIT

向作者/读者索取更多资源

Rational: Alzheimer's disease (AD) is a neurodegenerative pathology characterized by the presence of neuritic plaques and neurofibrillary tangles. Aluminum has been reported to play an important role in the etiology and pathogenesis of this disease. Hence, the present study aimed to evaluate the neuroprotective role of epigallocatechin-gallate (EGCG) loaded nanoparticles (nanoEGCG) against aluminum chloride (AlCl3) induced neurobehavioral and pathological changes in AD induced rats. Method: 100 mg/kg body weight AlCl3 was administered orally for 60 days, which was followed by 10 mg/kg body weight free EGCG and nanoEGCG treatment for 30 days. Morris water maze, open field and novel object recognition tests were employed for neurobehavioral assessment of the rats. This was followed by histopathological assessment of the cortex and the hippocampus in the rat brain. For further validation biochemical, immunohistochemistry and western blot assays were carried out. Result: Aluminum exposure reduced the exploratory and locomotor activities in open field and significantly reduced the memory and learning curve of rats in Morris water maze and novel object recognition tests. These neurobehavioral impairments were significantly attenuated in nanoEGCG treated rats. Histopathological assessment of the cortex and hippocampus of AlCl3 induced rat brains showed the presence of both neuritic plaques and neurofibrillary tangles. In nanoEGCG treated rats this pathology was absent. Significant increase in biochemical, immunohistochemical and protein levels was noted in AlCl3 induced rats. While these levels were greatly reduced in nanoEGCG treated rats. Conclusion: In conclusion, this study strengthens the hypothesis that EGCG nanoparticles can reverse memory loss, neuritic plaque and neurofibrillary tangles formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据