4.1 Article

Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species

期刊

FRESHWATER SCIENCE
卷 33, 期 4, 页码 1174-1183

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/678128

关键词

eDNA; kicknet sampling; lotic systems; cytochrome oxidase I; water quality assessment; EPT; Amphipoda

资金

  1. Swiss National Science Foundation [31003A_135622]
  2. Eawag discretionary funds
  3. Swiss National Science Foundation (SNF) [31003A_135622] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Accurate knowledge of the distribution of rare, indicator, or invasive species is required for conservation and management decisions. However, species monitoring done with conventional methods may have limitations, such as being laborious in terms of cost and time, and often requires invasive sampling of specimens. Environmental DNA (eDNA) has been identified as a molecular tool that could overcome these limitations, particularly in aquatic systems. Detection of rare and invasive amphibians and fish in lake and river systems has been effective, but few studies have targeted macroinvertebrates in aquatic systems. We expanded eDNA techniques to a broad taxonomic array of macroinvertebrate species in river and lake systems. We were able to detect 5 of 6 species (Ancylus fluviatilis, Asellus aquaticus, Baetis buceratus, Crangonyx pseudogracilis, and Gammarus pulex) with an eDNA method in parallel to the conventional kicknet-sampling method commonly applied in aquatic habitats. Our eDNA method showed medium to very high consistency with the data from kicknet-sampling and was able to detect both indicator and nonnative macroinvertebrates. Furthermore, our primers detected target DNA in concentrations down to 10(-5) ng/mu L of total extracted tissue DNA in the absence of background eDNA in the reaction. We demonstrate that an eDNA surveillance method based on standard PCR can deliver biomonitoring data across a wide taxonomic range of macroinvertebrate species (Gastropoda, Isopoda, Ephemeroptera, and Amphipoda) in riverine habitats and may offer the possibility to deliver data on a more refined time scale than conventional methods when focusing on single or few target species. Such information based on nondestructive sampling may allow rapid management decisions and actions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据