4.3 Article

Recognition of surface flow processes influenced by roads and trails in mountain areas using high-resolution topography

期刊

EUROPEAN JOURNAL OF REMOTE SENSING
卷 46, 期 -, 页码 176-197

出版社

ASSOC ITALIANA TELERILEVAMENTO
DOI: 10.5721/EuJRS20134610

关键词

LiDAR; TLS; DTM; road and trail networks; erosion; landslides

资金

  1. Italian Ministry of University and Research - GRANT PRIN
  2. Interreg IV A MassMove project

向作者/读者索取更多资源

Road networks in mountainous forest landscapes have the potential to increase the susceptibility to erosion and shallow landsliding. The same issue is observed also for minor trail networks, with evidences of surface erosion due to surface flow redistribution. This could be a problem in regions such as the Italian Alps where forestry and tourist activities are a relevant part of the local economy. This is just one among the several effects of modern anthropogenic forcing: it is now well accepted by the scientific community that we are living in a new era where human activities may leave a significant signature on the Earth, by altering its morphology, and significantly affecting the related surface processes. In this work, we proposed a methodology for the automatic recognition of roads and trails induced flow direction changes. The algorithm is based on the calculation of the drainage area variation in the presence, or in the absence of anthropic features such as roads and trails on hillslopes. To simulate the absence of alteration, the surface was smoothed considering moving windows of varying size. In the analysis, we used a 1 and 0.5 m Airborne Laser Swath Mapping technology (ALSM), using LiDAR (Light Detection And Ranging), and 0.2 m Terrestrial Laser Scanner (TLS) derived Digital Terrain Models (DTMs). The aim of the work is to underline the effectiveness of the proposed method based on high resolution topography in the detailed recognition of surface flow direction alteration due to roads, but also trail networks. We propose an automatic method to map at a large scale such alterations, also in areas where it is difficult to recognize them without a trail network surveyed in the field. This methodology could be considered as a support for modeling (i.e., terrain stability and erosion models), and it can be used to interactively assist the design of new infrastructure to reduce their effects on surface instabilities. The reported methodology could also have a role in risk management and environmental planning for mountain areas where tourism and the related economic activities are critical, and where also trails deserve attention due to induced slope instabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据