4.5 Article

Machine learning based automated dynamic quantification of left heart chamber volumes

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/ehjci/jey137

关键词

3D echocardiography; cardiac chamber quantification; automation; machine learning

资金

  1. Philips Healthcare
  2. T32 Cardiovascular Sciences Training Grant [5T32HL7381]

向作者/读者索取更多资源

Aims Studies have demonstrated the ability of a new automated algorithm for volumetric analysis of 3D echocardiographic (3DE) datasets to provide accurate and reproducible measurements of left ventricular and left atrial (LV, LA) volumes at end-systole and end-diastole. Recently, this methodology was expanded using a machine learning (ML) approach to automatically measure chamber volumes throughout the cardiac cycle, resulting in LV and LA volume-time curves. We aimed to validate ejection and filling parameters obtained from these curves by comparing them to independent well-validated reference techniques. Methods and results We studied 20 patients referred for cardiac magnetic resonance (CMR) examinations, who underwent 3DE imaging the same day. Volume-time curves were obtained for both LV and LA chambers using the ML algorithm (Philips HeartModel), and independently conventional 3DE volumetric analysis (TomTec), and CMR images (slice-by-slice, frame-by-frame manual tracing). Automatically derived LV and LA volumes and ejection/filling parameters were compared against both reference techniques. Minor manual correction of the automatically detected LV and LA borders was needed in 4/20 and 5/20 cases, respectively. Time required to generate volume-time curves was 35 +/- 17 s using ML algorithm, 3.6 +/- 0.9 min using conventional 3DE analysis, and 96 +/- 14 min using CMR. Volume-time curves obtained by all three techniques were similar in shape and magnitude. In both comparisons, ejection/filling parameters showed no significant inter-technique differences. Bland-Altman analysis confirmed small biases, despite wide limits of agreement. Conclusion The automated ML algorithm can quickly measure dynamic LV and LA volumes and accurately analyse ejection/filling parameters. Incorporation of this algorithm into the clinical workflow may increase the utilization of 3DE imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据