4.3 Article

Myogenic Potential of Mesenchymal Stem Cells - the Case of Adhesive Fraction of Human Umbilical Cord Blood Cells

期刊

CURRENT STEM CELL RESEARCH & THERAPY
卷 8, 期 1, 页码 82-90

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1574888X11308010010

关键词

Human umbilical cord blood; mesenchymal stem cells; myogenesis; regeneration

资金

  1. Polish Ministry of Science and Higher Education grant [N 301 405 133]

向作者/读者索取更多资源

Different sources of stem cells are considered as a potential source of precursor cells that could improve skeletal muscle regeneration. Under physiological conditions muscle regeneration is based on the satellite cells, i.e. adult muscle precursor cells that are localized between muscle fiber and surrounding basal lamina. These cells remain quiescent but after skeletal muscle injury activate, proliferate, differentiate, and fuse either to form new muscle fibers or reconstruct the damaged ones. As it was shown in many studies few populations of stem cells other than satellite cells are able to support skeletal muscle regeneration. Among them are mesenchymal stem cells (MSCs) that are present in many niches within adult organism and also in fetal tissues, such as human umbilical cord blood (HUCB) or umbilical cord connective tissue, i.e. Wharton's jelly. Thus, MSCs are intensively tested to prove that they are able to differentiate into various cell types, including skeletal myoblasts, and therefore could be useful in regenerative medicine. In our previous study we showed that MSCs isolated from Wharton's jelly expressed pluripotency as well as myogenic markers and were able to undergo myogenic differentiation both in vitro and in vivo. We also analyzed the potential of HUCB cells population which contains not only MSCs but also hematopoietic precursors. Our analyses of whole population of HUCB cells showed that these cells express myogenic regulatory factors, i.e. MyoD, and are able to contribute to skeletal muscle regeneration. In the present study we document that adherent fraction of HUCB cells, i.e. the cells that constitute the subpopulation enriched in MSCs, expresses pluripotency and myogenic markers, and have a positive impact at the regeneration of injured mouse skeletal muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据